12BR70 #### **LOW FREQUENCY TRANSDUCER** # **KEY FEATURES** - 250 W program power - Sensitivity: 93 dB (1W / 1m) - 2" copper voice coil - Ferrite magnet - Extended controlled displacement: X_{max} ± 8 mm - 26 mm peak-to-peak excursion before damage - Designed for low frequency reproduction # **TECHNICAL SPECIFICATIONS** | Nominal diameter | 300 mm | 12 in | |------------------------------------|--------------|--------------------------| | Rated impedance | | 8 Ω | | Minimum impedance | | 6,6 Ω | | Power capacity 1 | 1 | 125 W _{RMS} | | Program power ² | | 250 W | | Sensitivity | 93 dB 1W / | 1m @ Z _N | | Frequency range | 35 - | 4.000 Hz | | Recom. enclosure vol. | 50 / 120 I 1 | ,8 / 4,2 ft ³ | | Voice coil diameter | 50,8 mm | 2 in | | BI factor | | 12,1 N/A | | Moving mass | | 0,074 kg | | Voice coil length | | 19 mm | | Air gap height | | 7 mm | | X _{damage} (peak to peak) | | 26 mm | | | | | ### THIELE-SMALL PARAMETERS3 | Resonant frequency, f _s | 31 Hz | |--|----------------------| | D.C. Voice coil resistance, Re | 5,6 Ω | | Mechanical Quality Factor, Q _{ms} | 4,4 | | Electrical Quality Factor, Qes | 0,56 | | Total Quality Factor, Qts | 0,50 | | Equivalent Air Volume to C _{ms} , V _{as} | 142 I | | Mechanical Compliance, C _{ms} | 345 μ m / N | | Mechanical Resistance, R _{ms} | 3,3 kg / s | | Efficiency, η ₀ | 0,8 % | | Effective Surface Area, S _d | 0,054 m ² | | Maximum Displacement, X _{max} ⁴ | 8 mm | | Displacement Volume, V _d | 340 cm ³ | | Voice Coil Inductance, L _e | 0,8 mH | | | | #### Notes ¹ The power capaticty is determined according to AES2-1984 (r2003) standard. ² Program power is defined as power capacity + 3 dB. ³ T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time). $^{^4}$ The X_{max} is calculated as (L_{vc} - H_{ag})/2 + (H_{ag}/3,5), where L_{vc} is the voice coil length and H_{ag} is the air gap height. #### **LOW FREQUENCY TRANSDUCER** Note: Frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m # **MOUNTING INFORMATION** | Overall diameter | 312 mm | 12,3 in | |-------------------------|----------|---------| | Bolt circle diameter | 294,5 mm | 11,6 in | | Baffle cutout diameter: | | | | - Front mount | 278 mm | 10,9 in | | Depth | 134 mm | 5,3 in | | Net weight | 3,6 kg | 7,9 lb | | Shipping weight | 4,3 kg | 9,5 lb | # **DIMENSION DRAWING**